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Enhancing synchronizability of weighted dynamical networks using betweenness centrality
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By considering the eigenratio of the Laplacian of the connection graph as a synchronizability measure, we
propose a procedure for weighting dynamical networks to enhance their synchronizability. The method is based
on node and edge betweenness centrality measures and is tested on artificially constructed scale-free, Watts-
Strogatz, and random networks as well as on some real-world graphs. It is also numerically shown that the
same procedure could be used to enhance the phase synchronizability of networks of nonidentical oscillators.
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I. INTRODUCTION

Complex networks are ubiquitous and networks of dy-
namical units serve as natural models for many real-world
systems, with many examples ranging from the Internet to
the epidemiology, ecology, cell biology, and social interac-
tions [1,2]. The interplay between structural properties of
such complex networks on the one hand and dynamics lo-
cated on their nodes on the other hand has attracted a great
deal of attention [3-5]. Much of this interest is motivated by
the fact that many real-world networks share some common
structural properties such as small-world [6] and/or scale-
free [7] attributes.

In recent years an avalanche of studies on the most con-
spicuous form of collective behavior, synchronization, has
appeared [8]. The fundamental assumption of most of the
work in this field is that the individual dynamical systems are
diffusively coupled with uniform strength over unweighted
networks, but most relevant dynamical networks are inher-
ently weighted and directed; examples include brain net-
works [9], ecological systems [10], traffic load on a road
[11], social networks [12], metabolic networks [13], and
technological networks [1,14]. Thus, a natural question
arises, namely: “Given a network, how one can assign proper
connection weights to enhance its synchronizability?” The
answer may provide us with insights into the behavior of
real-world complex dynamical networks and guide us in de-
signing large artificial networks. In technological networks
with desirable synchronizability, assigning the appropriate
interaction weights between dynamical units is important
[14]. It has been recently shown that networks with properly
assigned weights can be distinctly more synchronizable than
unweighted networks [15].

In this paper, we give an algorithm for assigning connec-
tion weights to enhance the synchronizability of dynamical
networks. Starting with a connected, undirected, and un-
weighted network, and by considering its local and global
structural properties such as degree, node, and edge between-
ness centralities, we end up with an asymmetric weighted
network with enhanced synchronizability. Compared to other
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methods in this context [16-20], we give evidence that the
proposed method leads to higher synchronizability for a class
of scale-free, Watts-Strogatz, and random networks as well
as for many real-world complex networks. We also show that
the same weighting procedure enhances the phase synchro-
nizability of coupled nonidentical dynamical systems.

II. WEIGHTING ALGORITHM

Let us start with a dynamical network of N linearly
coupled identical systems with the following equations of
motion:

N

x;=F(x)- o2 g;H(x), i=1,...,N, (1)
j=1

where x;ER? are the state vectors, F:RY— R? defines the
individual system’s dynamical equation, and o is the uniform
coupling strength. The dynamical systems are coupled via a
linear output function H:R¢Y— R? and the coupling matrix
G=(g;;). We assume that G is symmetric, has nonpositive
off-diagonal elements, and has zero row sums. It is the La-

placian matrix of the coupling graph.
The variational equations of the manifold synchronized
solution [x,(r)=s(z), V i]can be diagonalized into N blocks

of the form &,=DF(s(2))&;— oNH(L,), where \; are the eigen-
values of G, ordered as 0=N;|=N,=---=M\y and A, is asso-
ciated with the synchronized manifold. In the following, we
suppose that the connection graph is connected, which im-
plies the strict inequality O=A; <A\,.

The largest Lyapunov exponent of the above variational
equation, A(o\;), called the master stability function [21],
gives a sufficient condition for the local stability of the syn-
chronization manifold: if the synchronization manifold is lo-
cally stable we must have A(o\;) <0, i=2,...,N. For a
number of systems such as x-coupled Rossler oscillators, the
master stability function is negative only within a bounded
interval (v;, »,) [21]. Requiring all coupling strengths to lie
within such an interval, i.e., ;<oA= - = 0Ay< 1, leads
to the following condition for the local stability of the syn-
chronization manifold: Ay/N, <w,/v,. The left-hand side of
the inequality depends solely on the structure of the graph,
while the right-hand side depends on the dynamics of the
individual systems and on the coupling configuration. There
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are a number of interpretations for synchronizability of dy-
namical networks [15]. We adopt here the following interpre-
tation: the larger the range of parameters of the individual
dynamical systems that allows for synchronization, the better
the synchronizability of the network. This relates the syn-
chronizability to the eigenratio Ay/\,, and concludes that the
smaller the eigenratio \y/\, of a network, the better its syn-
chronizability [22].

In general, there are two possible ways to enhance the
synchronizability of dynamical networks: rewiring of the
links [23] and/or assigning proper weights for the existing
links [15]. For many applications it is not possible to change
the network topology and the only option to enhance the
synchronizability is by weighting the links. In networks with
good synchronizability, couplings between the nodes are nei-
ther necessarily uniform nor symmetric. A very first attempt
to assign the proper connection weights for enhancing the
synchronizability was proposed in [18,19], where the cou-
pling on the right-hand side of Eq. (1) was taken as
(a/kiB)EjENiH(x,-—xj), with k; the degree of node i and N; the
set of neighbors of node i. The value of 8=1 was found to be
optimal in [19] for synchronizability. Further enhancement of
the synchronizability was achieved by scaling the weight of
each edge by its load [17], where the coupling takes the form
(a'/EjENipg)EjENing(xi—xj), where p;; is the load of the
edge e;; between the ith and jth nodes. The load (also known
as the edge betweenness centrality) of e; is defined as
pij=2p gl L pgle;)/T,,], where T, is the number of shortest
paths from the pth to the gth node and I, (e;;) is the number
of these paths making use of e;;. The optimal condition
B=1 was found for synchronizability [17], which itself per-
forms better than the optimal case of [19]. In this
way, not only the local structural information but
also the effects of network structure at a global level are
taken into account. Very recently, by considering the con-
cepts of gradient networks, another weighting algorithm,
(o/ EjENikf)EjENika(xi—xj), has been proposed [20].

Here we show that further enhancement of synchroniz-
ability can be achieved by considering not only connection
loads but also node betweenness centralities. The node
betweenness centrality C; is a centrality measure of
the ith node in a graph, which counts the number of
shortest paths making use of that node (except shortest
paths between the ith and other nodes) [24]. More precisely,
Ci=2, 41241 g(0)/T,,], where ', is the number of shortest
paths from the pth to the gth node and I',,(i) is the number
of these shortest paths making use of the ith node. In the
weighting procedure we propose, the weight of each edge
will be a function of its load and the betweenness centrality
of the tail node. The resulting weighted network becomes
directed; the links go from the head to the tail nodes. The
weight of an edge should essentially be proportional to the
betweenness centrality of the edge as proposed in [17]. The
dependence of the weight on the betweenness centrality of
the tail node is also straight forward. Nodes with high values
of betweenness centrality can be regarded as hub nodes, i.e.,
many shortest paths make use of them. Therefore, it is rea-
sonable to increase the weight of the links ending at these
nodes. More precisely, the network equations read
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% =Fx) - (e+Cp,H(x,~x)).
E (e+ Cj )piijNi

JEN;

i=1,2,...,N, (2)

where « is a real tunable parameter, and ¢ is a small positive
value to make (s+C}1) >0 (some nodes may have between-
ness centrality equal to zero). Here, we take e=1.

By this construction of connection weights, the
diagonal elements of G are always normalized to 1, thus
preventing the coupling from being arbitrarily large
or small. Although G becomes asymmetric for any
value of a, it can be written as G=D,WD,, where W
is a zero-row-sum matrix with off-diagonal elements
Wi==p;, D;=diag(1/Z;en pyj, ... 1/Zjey pyj), and D,
=diag[(e+CY}),...,(e+Cy)]. It can easily be shown that the
eigenvalues of G, \; (i=1,...,N), are the same as the eigen-
values of D!*D}”?WD,*D!?, i.e., real and non-negative with
smallest eigenvalue A;=0. For this case, the Gerschgorin
circle theorem [25] guarantees that 0 <A, =<--- =A\y=2. An-
other important term concerning our procedure is the effect
of different values of «. It is worth mentioning that the case
with =0 corresponds to the optimal situation proposed in
[17], which itself has the optimal case of [18,19] as a special
case. For large absolute values of «, it may happen that the
resulting weighted network is approximately disconnected
[17] and thus \, is close to zero; therefore, we limit our-
selves to a with small absolute values.

III. NUMERICAL SIMULATIONS
A. Performance in artificially constructed networks

By sweeping « and calculating the values of Ay/\,, we
can study the synchronizability profile of dynamical net-
works with different topological properties such as scale-
free, Watts-Strogatz, and random networks. We will con-
struct scale-free networks using an algorithm proposed in
[17], which itself is a generalization of the preferential at-
tachment growing procedure introduced in [7]. That is, start-
ing with a network of m+1 all-to-all connected nodes, at
each step a new node is added with m links that are con-
nected to node i with probability p,=(k;+B)/Z(k;+B),
where k; is the degree of the node and B a tunable real
parameter controlling the heterogeneity of the network [17].
Watts-Strogatz networks with average degree (k)=2m are
constructed based on the Watts-Strogatz algorithm [6] with
probability of rewiring P. Since we are also interested in
studying networks with small mean degree (e.g., (k)=2), and
construction of connected Watts-Strogatz networks with m
=1 for large N is difficult, we study Ay/\, for the largest
connected component of such networks. We also consider a
class of connected random networks with predefined average
degree, where in order to build a network with N nodes and
exactly mN edges, i.e. (k)=2m, first (mN/2) of possible
N(N-1)/2 edges are selected randomly, which results
in Q connected components. Then, these connected compo-
nents are randomly connected through (Q-1) edges
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FIG. 1. (Color online) Logarithm of the eigenratio Ay/\, as a
function of («,B) for scale-free networks with (a) N=1000, m=1,
(b) N=1000, m=2, (c) N=2000, m=1, and (d) N=2000, m=2. The
graphs refer to averaging over 20 realizations of the networks.

[if (Q—1)>(mN/2), the network is rejected]. Other remain-
ing edges are selected randomly, which results in a connected
random graph with exactly (k)=2m.

Figure 1 shows the logarithm of the eigenratio Ay/\, in
the parameter space (a,B) for scale-free networks of differ-
ent sizes and topological properties. For the case with m=1,
as « increases, A\y/\, is rapidly decreasing, i.e., synchroniz-
ability is enhanced. Note that a=0 recovers the optimal con-
dition of [17], which itself has the optimal situation of [19]
as a special case. For m=2, the situation is somewhat differ-
ent; for small values of B, Ay/\, is decreased by increasing
a. However, for larger values of B (less heterogeneity in the
degree distribution), there is a local minimum in @~ 0.5, and
then by increasing «, the eigenratio is also increased and by
further increasing « over a value around 1, the eigenratio
starts decreasing. Although a=1 is not the exact optimal
point, to avoid the network from being disconnected (high
values of a may lead the network to be disconnected), we
consider a=1 for weighting the scale-free networks in order
to enhance their synchronizability. Considering the node be-
tweenness centrality in addition to the edge load makes the
resulting weighted network more homogeneous and thus en-
hances its synchronizability.

For comparison, we have also applied our weighting pro-
cedure to Watts-Strogatz networks, which exhibit more ho-
mogeneity in the network structure than scale-free networks.
We consider Watts-Strogatz networks with m=1 and 2. For
the cases with m=1, we consider the largest connected com-
ponent of the network, where its average degree is about
2.23+0.1. Figure 2(a) [Fig. 2(c)] shows the logarithm of
An/N, as a function of a and P for the largest connected
component of Watts-Strogatz networks with m=1 and N
=1000 [2000]. The eigenratio profile for Watts-Strogatz net-
works with m=2 ({k)=4) is shown in Figs. 2(b) and 2(d) for
N=1000 and 2000, respectively. As is seen, there is a clear
optimum at a~ 1. Also, the effect of the Watts-Strogatz phe-
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FIG. 2. (Color online) Logarithm of the eigenratio Ay/\, as a
function of (a,P) for Watts-Strogatz networks with (a) N=1000,
m=1 (the largest component), (b) N=1000, m=2, (c) N=2000, m
=1 (the largest component), and (d) N=2000, m=2. The graphs
refer to averaging over 20 realizations of the networks.

nomenon on the synchronizability of the network is clearly
seen from these graphs, i.e., the synchronizability of the net-
work is greatly enhanced by introducing some rewirings.

Here we also report the behavior of the synchronizability
of weighted networks with a=1 as a function of network
size N. Figure 3(a) shows the results for scale-free networks
with different values of B and random networks, all the cases
with m=1. As expected, the propensity of synchronization
for weighted scale-free networks with lower values of B is
better regardless of N [16]. Also, weighted scale-free net-
works exhibit better synchronizability than random net-
works. For m=2 the profile of \y/\, as a function of N is
depicted in Fig. 3(b), where again weighted scale-free net-
works show better synchronizability than Watts-Strogatz and
random networks. It also illustrates the fact that synchroniz-
ability of the weighted networks is almost independent of
network size. Indeed, the average degree seems to be the
only important factor affecting the synchronizability of the
weighted networks.
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FIG. 3. (Color online) Eigenratio \y/\, (on logarithmic scale)
as a function of the network size N for different classes of networks
[scale-free (SF), Watts-Strogatz (SW), and random] with a=1 and
with (a) m=1, (b) m=2. Data refer to averages over 20 realizations.

016105-3



JALILIL, RAD, AND HASLER

PHYSICAL REVIEW E 78, 016105 (2008)

TABLE 1. Enhancing the synchronizability of some real-world networks with different algorithms. First
column: the name of the networks. Second, third, and fourths columns: network size N, average node degree
(k), and standard deviation of node degrees std(k), respectively. Fifth to eighth columns: the eigenratio Ay/\,
of the weighted networks using different weighted algorithms.

Av/ Ny Ay/Ny Ay/Ny An/ Ny
Real-world networks N ky std(k) [18] [17] [20] using (2)
Protein structure network 95 448 145 3927 63.1 262.2 23.1
Power grid network 4941  2.67 1.79 7349.1 3932 14924.1 157.2
U.S. airport network 500 11.92 22.36 634 115 4.8 29
E-mail network 1133 9.62 9.34 14.6 8.6 5.8 5.4
Protein-protein interaction network 2840 292 873 86.5 349 41.6 16.5
Yeast-protein interaction network 1458 2.68 3.45 238.1 524 269.1 25.6
Network of Internet as autonomous system 8689  4.08 29.08 55.8 13.9 3.6 3.1
Coauthorship network 4380 325 3.55 383.7 68.3 273.1 38.7

B. Performance in real-world networks

Although we showed that applying (2) for weighting the
edges of dynamical networks greatly enhances the synchro-
nizability of the network, i.e., reduces the eigenratio \y/\,,
many real-world networks cannot be simply modeled by
these scale-free, Watts-Strogatz, or random network models.
Real-world networks may possess a number of complex to-
pological properties, which can make it difficult to construct
a model that mimics all of them. Thus, we consider some
available real-world undirected networks' and apply the pro-
posed weighting algorithm (2) to study the behavior of
A/ N, in the resulting weighted networks. We consider some
real-world networks including the protein structure network
[26], network of the power grid [6], U.S. airport network
[27],% e-mail network [28], protein-protein interaction net-
work [29], yeast protein interaction network [30], Internet on
the level of autonomous systems [31], and the network of
coauthorship [32].

Table I summarizes the results. For all networks, our pro-
posed weighting algorithm is the best. Let us remark that,
since for the algorithm of [20] there is no optimal value of 3,
thus for each network we adopt the least /N, among the
cases with =1, 2, and 3. For the methods of [18] and [17],
we used the optimal condition S=1 and for our proposed
method we used a=1. Since the method of [18] is a simple
scaling based on the degree of the nodes, it is incapable of
capturing all the useful information, and thus its performance
is always worse than that of the one proposed in [17], which
indeed considered the edge betweenness centrality as well as
scaling based on the nodes. The method proposed in [20]
uses the degree of nodes in a different way, and its perfor-
mance is not always better than [17]. Indeed, it can be seen
that on increase of the heterogeneity of the network, i.e.,
increase of the standard deviation of the node degrees, the

'All of these networks are downloadable from the Internet at the
web site provided by the authors of the original works; interested
readers may refer to the cited work.

The original version of the U.S. airport network is a weighted
network, but here we have considered only the unweighted version.

algorithm of [20] performs better than that of [17]. Our pro-
posed algorithm is an intelligent extension of [17]; to con-
sider the heterogeneity of the network, it considers the node
betweenness centrality in addition to the edge betweenness
centrality. Thus, it always outperforms [17]. However, for
networks with high levels of heterogeneity, [20] gives results
better than [17] and close to our results.

C. Enhancing phase synchronizability in coupled nonidentical
dynamical systems

The rationale behind taking the eigenratio Ay/\, as a syn-
chronizability measure of dynamical networks is the master
stability function [21]. Since the theory of the master stabil-
ity function was developed for local stability of synchroni-
zation of identical dynamical systems, it cannot be directly
applied to coupled nonidentical systems. However, coupled
nonidentical dynamical systems may exhibit some weaker
types of synchronization such as phase synchronization [33].
Here, we study the collective behavior of nonidentical
Rossler oscillators [34] on scale-free, Watts-Strogatz, and
random networks to study how much the proposed weighting
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FIG. 4. (Color online) Phase order parameter @ as a function of
uniform coupling strength ¢ for coupled nonidentical chaotic
Rossler oscillators. Data refer to averages over 20 realizations of (a)
scale-free (SF) networks with m=1 and B=35, random networks
with m=1; (b) scale-free networks with m=2 and B=5, Watts-
Strogatz (SW) networks with m=2 and P=0.5. The network size in
all case is N=1500.
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algorithm can improve the degree of phase synchronization.
The dynamics of motion is governed by (2), but with non-
identical individual dynamical systems, where the dynamics
of the ith node with state vector x;=(qa;,b;,c;) is given by
F(x,)=[-wb;—c;, wa;+0.165b;,0.2+c(a;—10)], and H(x)
=a [17]. Here w; is the natural frequency of the ith system,
which is randomly chosen from a Gaussian distribution with
mean value w,,=1 and standard deviation Aw=0.03.

To study the phase synchronization among coupled oscil-
lators one can monitor the order parameter [8,33] &
=((1/N)Ejy:1ei“’j(’)),, where ¢;(t)=arctan[b;(r)/a;(t)] repre-
sents the instantaneous phase of the jth oscillator, and (-),
indicates time averaging. The values @ =1 indicate that the
systems are phase synchronized. The behavior of @ as a
function of the general coupling strength o is shown in Fig.
4(a) for m=1 and Fig. 4(b) for m=2 using different network
topologies with N=1500. For all of the cases, the weighting
approach (2) with a=1 (solid lines) results in better phase
synchronizability than the case with a=0 (dashed lines).
This improvement is well pronounced for the case with m
=1 (Fig. 4(a)). These results confirm that the master stability
function gives valid information for nonidentical oscillators
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also. Note that synchronizability is improved if the o range
for which ® =1 increases.

IV. CONCLUSIONS

By considering the eigenratio Ay/\, of the Laplacian of
the connection graph as the synchronizability measure, we
proposed a procedure for assigning proper connection
weights to enhance the synchronizability of dynamical net-
works. To form the weights, we used the information of the
node and the edge betweenness centrality measures. The al-
gorithm was tested on artificially constructed networks such
as scale-free, Watts-Strogatz, and random networks as well
as on some real-world networks. This method was also pow-
erful in enhancing the phase synchronizability in networks of
nonidentical dynamical systems.
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